Lemma 22.27.12. In Situation 22.27.2 let $f_1 : x_1 \to y_1$ and $f_2 : x_2 \to y_2$ be morphisms in $\text{Comp}(\mathcal{A})$. Let
be any morphism of triangles in $K(\mathcal{A})$. If $a$ and $b$ are homotopy equivalences, then so is $c$.
Lemma 22.27.12. In Situation 22.27.2 let $f_1 : x_1 \to y_1$ and $f_2 : x_2 \to y_2$ be morphisms in $\text{Comp}(\mathcal{A})$. Let
be any morphism of triangles in $K(\mathcal{A})$. If $a$ and $b$ are homotopy equivalences, then so is $c$.
Proof. Since $a$ and $b$ are homotopy equivalences, they are invertible in $K(\mathcal{A})$ so let $a^{-1}$ and $b^{-1}$ denote their inverses in $K(\mathcal{A})$, giving us a commutative diagram
where the map $c'$ is defined via Lemma 22.27.3 applied to the left commutative box of the above diagram. Since the diagram commutes in $K(\mathcal{A})$, it suffices by Lemma 22.27.8 to prove the following: given a morphism of triangle $(1,1,c): (x,y,c(f),f,i,p)\to (x,y,c(f),f,i,p)$ in $K(\mathcal{A})$, the map $c$ is an isomorphism in $K(\mathcal{A})$. We have the commutative diagrams in $K(\mathcal{A})$:
Since the rows are admissible short exact sequences, we obtain the identity $(c-1)^2 = 0$ by Lemma 22.27.8, from which we conclude that $2-c$ is inverse to $c$ in $K(\mathcal{A})$ so that $c$ is an isomorphism. $\square$
Comments (0)