Processing math: 100%

The Stacks project

Lemma 22.27.13. In Situation 22.27.2.

  1. Given an admissible short exact sequence x\xrightarrow {\alpha } y\xrightarrow {\beta } z. Then there exists a homotopy equivalence e:C(\alpha )\to z such that the diagram

    22.27.13.1
    \begin{equation} \label{dga-equation-cone-isom-triangle} \vcenter { \xymatrix{ x\ar[r]^{\alpha }\ar[d] & y\ar[r]^{b}\ar[d] & C(\alpha )\ar[r]^{-c}\ar@{.>}[d]^{e} & x[1]\ar[d] \\ x\ar[r]^{\alpha } & y\ar[r]^{\beta } & z\ar[r]^{\delta } & x[1] } } \end{equation}

    defines an isomorphism of triangles in K(\mathcal{A}). Here y\xrightarrow {b}C(\alpha )\xrightarrow {c}x[1] is the admissible short exact sequence given as in axiom (C).

  2. Given a morphism \alpha : x \to y in \text{Comp}(\mathcal{A}), let x \xrightarrow {\tilde{\alpha }} \tilde{y} \to y be the factorization given as in Lemma 22.27.6, where the admissible monomorphism x \xrightarrow {\tilde{\alpha }} y extends to the admissible short exact sequence

    \xymatrix{ x \ar[r]^{\tilde{\alpha }} & \tilde{y} \ar[r] & z }

    Then there exists an isomorphism of triangles

    \xymatrix{ x \ar[r]^{\tilde{\alpha }} \ar[d] & \tilde{y} \ar[r] \ar[d] & z \ar[r]^{\delta } \ar@{.>}[d]^{e} & x[1] \ar[d] \\ x \ar[r]^{\alpha } & y \ar[r] & C(\alpha ) \ar[r]^{-c} & x[1] }

    where the upper triangle is the triangle associated to the sequence x \xrightarrow {\tilde{\alpha }} \tilde{y} \to z.

Proof. For (1), we consider the more complete diagram, without the sign change on c:

\xymatrix{ x\ar@<0.5ex>[r]^{\alpha } \ar[d] & y\ar@<0.5ex>[l]^{\pi } \ar@<0.5ex>[r]^{b}\ar[d] & C(\alpha )\ar@<0.5ex>[l]^{p} \ar@<0.5ex>[r]^{c}\ar@{.>}@<0.5ex>[d]^{e} & x[1]\ar@<0.5ex>[l]^{\sigma } \ar[d]\ar@<0.5ex>[r]^{\alpha } & y[1]\ar@<0.5ex>[l]^{\pi } \\ x\ar@<0.5ex>[r]^{\alpha } & y\ar@<0.5ex>[r]^{\beta } \ar@<0.5ex>[l]^{\pi } & z\ar[r]^{\delta }\ar@<0.5ex>[l]^{s} \ar@{.>}@<0.5ex>[u]^{f} & x[1] }

where the admissible short exact sequence x\xrightarrow {\alpha } y\xrightarrow {\beta } z is given the splitting \pi , s, and the admissible short exact sequence y\xrightarrow {b}C(\alpha )\xrightarrow {c}x[1] is given the splitting p, \sigma . Note that (identifying hom-sets under shifting)

\alpha = pd(\sigma ) = -d(p)\sigma ,\quad \delta = \pi d(s) = -d(\pi )s

by the construction in Lemma 22.27.1.

We define e=\beta p and f=bs-\sigma \delta . We first check that they are morphisms in \text{Comp}(\mathcal{A}). To show that d(e)=\beta d(p) vanishes, it suffices to show that \beta d(p)b and \beta d(p)\sigma both vanish, whereas

\beta d(p)b = \beta d(pb) = \beta d(1_ y) = 0,\quad \beta d(p)\sigma = -\beta \alpha = 0

Similarly, to check that d(f)=bd(s)-d(\sigma )\delta vanishes, it suffices to check the post-compositions by p and c both vanish, whereas

\begin{align*} pbd(s) - pd(\sigma )\delta = & d(s)-\alpha \delta = d(s)-\alpha \pi d(s) = 0 \\ cbd(s)-cd(\sigma )\delta = & -cd(\sigma )\delta = -d(c\sigma )\delta = 0 \end{align*}

The commutativity of left two squares of the diagram 22.27.13.1 follows directly from definition. Before we prove the commutativity of the right square (up to homotopy), we first check that e is a homotopy equivalence. Clearly,

ef=\beta p (bs-\sigma \delta )=\beta s=1_ z

To check that fe is homotopic to 1_{C(\alpha )}, we first observe

b\alpha = bpd(\alpha ) = d(\sigma ),\quad \alpha c = -d(p)\sigma c = -d(p),\quad d(\pi )p = d(\pi )s\beta p = -\delta \beta p

Using these identities, we compute

\begin{align*} 1_{C(\alpha )} = & bp + \sigma c \quad (\text{from }y \xrightarrow {b} C(\alpha ) \xrightarrow {c} x[1]) \\ = & b(\alpha \pi + s\beta )p + \sigma (\pi \alpha )c \quad (\text{from }x \xrightarrow {\alpha } y \xrightarrow {\beta } z) \\ = & d(\sigma )\pi p + bs\beta p - \sigma \pi d(p) \quad (\text{by the first two identities above}) \\ = & d(\sigma )\pi p + bs\beta p - \sigma \delta \beta p + \sigma \delta \beta p - \sigma \pi d(p) \\ = & (bs - \sigma \delta )\beta p + d(\sigma )\pi p - \sigma d(\pi )p - \sigma \pi d(p)\quad (\text{by the third identity above}) \\ = & fe + d(\sigma \pi p) \end{align*}

since \sigma \in \mathop{\mathrm{Hom}}\nolimits ^{-1}(x, C(\alpha )) (cf. proof of Lemma 22.27.4). Hence e and f are homotopy inverses. Finally, to check that the right square of diagram 22.27.13.1 commutes up to homotopy, it suffices to check that -cf=\delta . This follows from

-cf = -c(bs-\sigma \delta ) = c\sigma \delta = \delta

since cb=0.

For (2), consider the factorization x\xrightarrow {\tilde{\alpha }}\tilde{y}\to y given as in Lemma 22.27.6, so the second morphism is a homotopy equivalence. By Lemmas 22.27.3 and 22.27.12, there exists an isomorphism of triangles between

x \xrightarrow {\alpha } y \to C(\alpha ) \to x[1] \quad \text{and}\quad x \xrightarrow {\tilde{\alpha }} \tilde{y} \to C(\tilde{\alpha }) \to x[1]

Since we can compose isomorphisms of triangles, by replacing \alpha by \tilde{\alpha }, y by \tilde{y}, and C(\alpha ) by C(\tilde{\alpha }), we may assume \alpha is an admissible monomorphism. In this case, the result follows from (1). \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.