Lemma 76.44.10. Let $S$ be a scheme. Let $i : Z \to Y$ and $j : Y \to X$ be immersions of algebraic spaces over $S$. Assume $X$ is locally Noetherian. The following are equivalent
$i$ and $j$ are Koszul regular immersions,
$i$ and $j \circ i$ are Koszul regular immersions,
$j \circ i$ is a Koszul regular immersion and the conormal sequence
\[ 0 \to i^*\mathcal{C}_{Y/X} \to \mathcal{C}_{Z/X} \to \mathcal{C}_{Z/Y} \to 0 \]is exact and locally split.
Comments (0)