The Stacks project

Proposition 22.37.6. Let $R$ be a ring. Let $(A, \text{d})$ and $(B, \text{d})$ be differential graded $R$-algebras. Let $F : D(A, \text{d}) \to D(B, \text{d})$ be an $R$-linear equivalence of triangulated categories. Assume that

  1. $A = H^0(A)$, and

  2. $B$ is K-flat as a complex of $R$-modules.

Then there exists an $(A, B)$-bimodule $N$ as in Lemma 22.37.2.

Proof. As in Remark 22.37.5 above, we set $N = F(A)$ in $D(B, \text{d})$. We may assume that $N$ is a differential graded $B$-module with property (P). Set

\[ (E, \text{d}) = \mathop{\mathrm{Hom}}\nolimits _{\text{Mod}^{dg}_{(B, \text{d})}}(N, N) \]

Then $H^0(E) = A$ and $H^ k(E) = 0$ for $k \not= 0$ by Lemma 22.22.3. Moreover, by the discussion in Remark 22.37.5 and by Lemma 22.37.2 we see that $N$ as a $(E, B)$-bimodule induces an equivalence $- \otimes _ E^\mathbf {L} N : D(E, \text{d}) \to D(B, \text{d})$. Let $E' \subset E$ be the differential graded $R$-subalgebra with

\[ (E')^ i = \left\{ \begin{matrix} E^ i & \text{if }i < 0 \\ \mathop{\mathrm{Ker}}(E^0 \to E^1) & \text{if }i = 0 \\ 0 & \text{if }i > 0 \end{matrix} \right. \]

Then there are quasi-isomorphisms of differential graded algebras $(A, \text{d}) \leftarrow (E', \text{d}) \rightarrow (E, \text{d})$. Thus we obtain equivalences

\[ D(A, \text{d}) \leftarrow D(E', \text{d}) \rightarrow D(E, \text{d}) \rightarrow D(B, \text{d}) \]

by Lemma 22.37.1. Note that the quasi-inverse $D(A, \text{d}) \to D(E', \text{d})$ of the left vertical arrow is given by $M \mapsto M \otimes _ A^\mathbf {L} A$ where $A$ is viewed as a $(A, E')$-bimodule, see Example 22.33.6. On the other hand the functor $D(E', \text{d}) \to D(B, \text{d})$ is given by $M \mapsto M \otimes _{E'}^\mathbf {L} N$ where $N$ is as above. We conclude by Lemma 22.34.3. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 09SA. Beware of the difference between the letter 'O' and the digit '0'.