Lemma 37.58.5. Let $f : X \to S$ be a morphism of schemes which is locally of finite type. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module. Let $S' \to S$ be a morphism of schemes, set $X' = X \times _ S S'$ and denote $\mathcal{F}'$ the pullback of $\mathcal{F}$ to $X'$. If $\mathcal{F}$ is of finite presentation relative to $S$, then $\mathcal{F}'$ is of finite presentation relative to $S'$.
Proof. Translation of the result of More on Algebra, Lemma 15.80.5 into the language of schemes. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)