Lemma 75.12.2. Let S be an affine scheme. Let X be a Noetherian algebraic space over S. Every injective object of \mathit{QCoh}(\mathcal{O}_ X) is a direct summand of a filtered colimit \mathop{\mathrm{colim}}\nolimits _ i \mathcal{F}_ i of quasi-coherent sheaves of the form
\mathcal{F}_ i = (Z_ i \to X)_*\mathcal{G}_ i
where Z_ i is the spectrum of an Artinian ring and \mathcal{G}_ i is a coherent module on Z_ i.
Proof.
Choose an affine scheme U and a surjective étale morphism j : U \to X (Properties of Spaces, Lemma 66.6.3). Then U is a Noetherian affine scheme. Choose an injective object \mathcal{J}' of \mathit{QCoh}(\mathcal{O}_ U) such that there exists an injection \mathcal{J}|_ U \to \mathcal{J}'. Then
\mathcal{J} \to j_*\mathcal{J}'
is an injective morphism in \mathit{QCoh}(\mathcal{O}_ X), hence identifies \mathcal{J} as a direct summand of j_*\mathcal{J}'. Thus the result follows from the corresponding result for \mathcal{J}' proved in Lemma 75.12.1.
\square
Comments (0)