Lemma 75.12.2. Let $S$ be an affine scheme. Let $X$ be a Noetherian algebraic space over $S$. Every injective object of $\mathit{QCoh}(\mathcal{O}_ X)$ is a direct summand of a filtered colimit $\mathop{\mathrm{colim}}\nolimits _ i \mathcal{F}_ i$ of quasi-coherent sheaves of the form

\[ \mathcal{F}_ i = (Z_ i \to X)_*\mathcal{G}_ i \]

where $Z_ i$ is the spectrum of an Artinian ring and $\mathcal{G}_ i$ is a coherent module on $Z_ i$.

**Proof.**
Choose an affine scheme $U$ and a surjective étale morphism $j : U \to X$ (Properties of Spaces, Lemma 66.6.3). Then $U$ is a Noetherian affine scheme. Choose an injective object $\mathcal{J}'$ of $\mathit{QCoh}(\mathcal{O}_ U)$ such that there exists an injection $\mathcal{J}|_ U \to \mathcal{J}'$. Then

\[ \mathcal{J} \to j_*\mathcal{J}' \]

is an injective morphism in $\mathit{QCoh}(\mathcal{O}_ X)$, hence identifies $\mathcal{J}$ as a direct summand of $j_*\mathcal{J}'$. Thus the result follows from the corresponding result for $\mathcal{J}'$ proved in Lemma 75.12.1.
$\square$

## Comments (0)