Lemma 21.16.6. In the situation of Lemma 21.16.5 set $\mathcal{F} = \mathop{\mathrm{colim}}\nolimits f_ i^{-1}\mathcal{F}_ i$. Let $i \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{I})$, $X_ i \in \text{Ob}(\mathcal{C}_ i)$. Then

for all $p \geq 0$.

Lemma 21.16.6. In the situation of Lemma 21.16.5 set $\mathcal{F} = \mathop{\mathrm{colim}}\nolimits f_ i^{-1}\mathcal{F}_ i$. Let $i \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{I})$, $X_ i \in \text{Ob}(\mathcal{C}_ i)$. Then

\[ \mathop{\mathrm{colim}}\nolimits _{a : j \to i} H^ p(u_ a(X_ i), \mathcal{F}_ j) = H^ p(u_ i(X_ i), \mathcal{F}) \]

for all $p \geq 0$.

**Proof.**
The case $p = 0$ is Sites, Lemma 7.18.4.

Choose $(\mathcal{F}_ i, \varphi _ a) \to (\mathcal{G}_ i, \psi _ a)$ as in Lemma 21.16.5. Arguing exactly as in the proof of Lemma 21.16.1 we see that it suffices to prove that $H^ p(X, \mathop{\mathrm{colim}}\nolimits f_ i^{-1}\mathcal{G}_ i) = 0$ for $p > 0$.

Set $\mathcal{G} = \mathop{\mathrm{colim}}\nolimits f_ i^{-1}\mathcal{G}_ i$. To show vanishing of cohomology of $\mathcal{G}$ on every object of $\mathcal{C}$ we show that the Čech cohomology of $\mathcal{G}$ for any covering $\mathcal{U}$ of $\mathcal{C}$ is zero (Lemma 21.10.9). The covering $\mathcal{U}$ comes from a covering $\mathcal{U}_ i$ of $\mathcal{C}_ i$ for some $i$. We have

\[ \check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{G}) = \mathop{\mathrm{colim}}\nolimits _{a : j \to i} \check{\mathcal{C}}^\bullet (u_ a(\mathcal{U}_ i), \mathcal{G}_ j) \]

by the case $p = 0$. The right hand side is acyclic in positive degrees as a filtered colimit of acyclic complexes by Lemma 21.10.2. See Algebra, Lemma 10.8.8. $\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)