Lemma 21.16.6. In the situation of Lemma 21.16.5 set \mathcal{F} = \mathop{\mathrm{colim}}\nolimits f_ i^{-1}\mathcal{F}_ i. Let i \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{I}), X_ i \in \text{Ob}(\mathcal{C}_ i). Then
for all p \geq 0.
Lemma 21.16.6. In the situation of Lemma 21.16.5 set \mathcal{F} = \mathop{\mathrm{colim}}\nolimits f_ i^{-1}\mathcal{F}_ i. Let i \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{I}), X_ i \in \text{Ob}(\mathcal{C}_ i). Then
for all p \geq 0.
Proof. The case p = 0 is Sites, Lemma 7.18.4.
Choose (\mathcal{F}_ i, \varphi _ a) \to (\mathcal{G}_ i, \psi _ a) as in Lemma 21.16.5. Arguing exactly as in the proof of Lemma 21.16.1 we see that it suffices to prove that H^ p(X, \mathop{\mathrm{colim}}\nolimits f_ i^{-1}\mathcal{G}_ i) = 0 for p > 0.
Set \mathcal{G} = \mathop{\mathrm{colim}}\nolimits f_ i^{-1}\mathcal{G}_ i. To show vanishing of cohomology of \mathcal{G} on every object of \mathcal{C} we show that the Čech cohomology of \mathcal{G} for any covering \mathcal{U} of \mathcal{C} is zero (Lemma 21.10.9). The covering \mathcal{U} comes from a covering \mathcal{U}_ i of \mathcal{C}_ i for some i. We have
by the case p = 0. The right hand side is acyclic in positive degrees as a filtered colimit of acyclic complexes by Lemma 21.10.2. See Algebra, Lemma 10.8.8. \square
Comments (0)