The Stacks project

Lemma 59.55.5. Let $f : X \to Y$ be a surjective finite morphism of schemes. Set $f_ n : X_ n \to Y$ equal to the $(n + 1)$-fold fibre product of $X$ over $Y$. For $\mathcal{F} \in \textit{Ab}(Y_{\acute{e}tale})$ set $\mathcal{F}_ n = f_{n, *}f_ n^{-1}\mathcal{F}$. There is an exact sequence

\[ 0 \to \mathcal{F} \to \mathcal{F}_0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \ldots \]

on $X_{\acute{e}tale}$. Moreover, there is a spectral sequence

\[ E_1^{p, q} = H^ q_{\acute{e}tale}(X_ p, f_ p^{-1}\mathcal{F}) \]

converging to $H^{p + q}(Y_{\acute{e}tale}, \mathcal{F})$. This spectral sequence is functorial in $\mathcal{F}$.

Proof. If we prove the first statement of the lemma, then we obtain a spectral sequence with $E_1^{p, q} = H^ q_{\acute{e}tale}(Y, \mathcal{F})$ converging to $H^{p + q}(Y_{\acute{e}tale}, \mathcal{F})$, see Derived Categories, Lemma 13.21.3. On the other hand, since $R^ if_{p, *}f_ p^{-1}\mathcal{F} = 0$ for $i > 0$ (Proposition 59.55.2) we get

\[ H^ q_{\acute{e}tale}(X_ p, f_ p^{-1}\mathcal{F}) = H^ q_{\acute{e}tale}(Y, f_{p, *}f_ p^{-1} \mathcal{F}) = H^ q_{\acute{e}tale}(Y, \mathcal{F}_ p) \]

by Proposition 59.54.2 and we get the spectral sequence of the lemma.

To prove the first statement of the lemma, observe that $X_ n$ forms a simplicial scheme over $Y$, see Simplicial, Example 14.3.5. Observe moreover, that for each of the projections $d_ j : X_{n + 1} \to X_ n$ there is a map $d_ j^{-1} f_ n^{-1}\mathcal{F} \to f_{n + 1}^{-1}\mathcal{F}$. These maps induce maps

\[ \delta _ j : \mathcal{F}_ n \to \mathcal{F}_{n + 1} \]

for $j = 0, \ldots , n + 1$. We use the alternating sum of these maps to define the differentials $\mathcal{F}_ n \to \mathcal{F}_{n + 1}$. Similarly, there is a canonical augmentation $\mathcal{F} \to \mathcal{F}_0$, namely this is just the canonical map $\mathcal{F} \to f_*f^{-1}\mathcal{F}$. To check that this sequence of sheaves is an exact complex it suffices to check on stalks at geometric points (Theorem 59.29.10). Thus we let $\overline{y} : \mathop{\mathrm{Spec}}(k) \to Y$ be a geometric point. Let $E = \{ \overline{x} : \mathop{\mathrm{Spec}}(k) \to X \mid f(\overline{x}) = \overline{y}\} $. Then $E$ is a finite nonempty set and we see that

\[ (\mathcal{F}_ n)_{\overline{y}} = \bigoplus \nolimits _{e \in E^{n + 1}} \mathcal{F}_{\overline{y}} \]

by Proposition 59.55.2 and Lemma 59.36.2. Thus we have to see that given an abelian group $M$ the sequence

\[ 0 \to M \to \bigoplus \nolimits _{e \in E} M \to \bigoplus \nolimits _{e \in E^2} M \to \ldots \]

is exact. Here the first map is the diagonal map and the map $\bigoplus _{e \in E^{n + 1}} M \to \bigoplus _{e \in E^{n + 2}} M$ is the alternating sum of the maps induced by the $(n + 2)$ projections $E^{n + 2} \to E^{n + 1}$. This can be shown directly or deduced by applying Simplicial, Lemma 14.26.9 to the map $E \to \{ *\} $. $\square$


Comments (0)

There are also:

  • 1 comment(s) on Section 59.55: Vanishing of finite higher direct images

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 09Z2. Beware of the difference between the letter 'O' and the digit '0'.