Lemma 59.73.8. Let $X$ be a quasi-compact and quasi-separated scheme. Let $\Lambda$ be a Noetherian ring. Let $\mathcal{F}$ be a constructible sheaf of sets, abelian groups, or $\Lambda$-modules on $X_{\acute{e}tale}$. Let $\mathcal{G} = \mathop{\mathrm{colim}}\nolimits \mathcal{G}_ i$ be a filtered colimit of sheaves of sets, abelian groups, or $\Lambda$-modules. Then

$\mathop{\mathrm{Mor}}\nolimits (\mathcal{F}, \mathcal{G}) = \mathop{\mathrm{colim}}\nolimits \mathop{\mathrm{Mor}}\nolimits (\mathcal{F}, \mathcal{G}_ i)$

in the category of sheaves of sets, abelian groups, or $\Lambda$-modules on $X_{\acute{e}tale}$.

Proof. The case of sheaves of sets. By Lemma 59.73.5 it suffices to prove the lemma for $h_ U$ where $U$ is a quasi-compact and quasi-separated object of $X_{\acute{e}tale}$. Recall that $\mathop{\mathrm{Mor}}\nolimits (h_ U, \mathcal{G}) = \mathcal{G}(U)$. Hence the result follows from Sites, Lemma 7.17.7.

In the case of abelian sheaves or sheaves of modules, the result follows in the same way using Lemmas 59.73.7 and 59.73.6. For the case of abelian sheaves, we add that $\mathop{\mathrm{Mor}}\nolimits (j_{U!}\underline{\mathbf{Z}/n\mathbf{Z}}, \mathcal{G})$ is equal to the $n$-torsion elements of $\mathcal{G}(U)$. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).