Lemma 59.73.8. Let X be a quasi-compact and quasi-separated scheme. Let \Lambda be a Noetherian ring. Let \mathcal{F} be a constructible sheaf of sets, abelian groups, or \Lambda -modules on X_{\acute{e}tale}. Let \mathcal{G} = \mathop{\mathrm{colim}}\nolimits \mathcal{G}_ i be a filtered colimit of sheaves of sets, abelian groups, or \Lambda -modules. Then
\mathop{\mathrm{Mor}}\nolimits (\mathcal{F}, \mathcal{G}) = \mathop{\mathrm{colim}}\nolimits \mathop{\mathrm{Mor}}\nolimits (\mathcal{F}, \mathcal{G}_ i)
in the category of sheaves of sets, abelian groups, or \Lambda -modules on X_{\acute{e}tale}.
Proof.
The case of sheaves of sets. By Lemma 59.73.5 it suffices to prove the lemma for h_ U where U is a quasi-compact and quasi-separated object of X_{\acute{e}tale}. Recall that \mathop{\mathrm{Mor}}\nolimits (h_ U, \mathcal{G}) = \mathcal{G}(U). Hence the result follows from Sites, Lemma 7.17.7.
In the case of abelian sheaves or sheaves of modules, the result follows in the same way using Lemmas 59.73.7 and 59.73.6. For the case of abelian sheaves, we add that \mathop{\mathrm{Mor}}\nolimits (j_{U!}\underline{\mathbf{Z}/n\mathbf{Z}}, \mathcal{G}) is equal to the n-torsion elements of \mathcal{G}(U).
\square
Comments (0)