Processing math: 100%

The Stacks project

Lemma 59.91.3. Let A be a henselian local ring. Let f : X \to \mathop{\mathrm{Spec}}(A) be a proper morphism of schemes. Let X_0 \subset X be the fibre of f over the closed point. For any sheaf \mathcal{F} on X_{\acute{e}tale} we have \Gamma (X, \mathcal{F}) = \Gamma (X_0, \mathcal{F}|_{X_0}).

Proof. This is a special case of Lemma 59.91.2. \square


Comments (0)

There are also:

  • 4 comment(s) on Section 59.91: The proper base change theorem

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.