Lemma 59.91.4. Let $f : X \to S$ be a proper morphism of schemes. Let $\overline{s} \to S$ be a geometric point. For any sheaf $\mathcal{F}$ on $X_{\acute{e}tale}$ the canonical map

$(f_*\mathcal{F})_{\overline{s}} \longrightarrow \Gamma (X_{\overline{s}}, \mathcal{F}_{\overline{s}})$

is bijective.

Proof. By Theorem 59.53.1 (for sheaves of sets) we have

$(f_*\mathcal{F})_{\overline{s}} = \Gamma (X \times _ S \mathop{\mathrm{Spec}}(\mathcal{O}_{S, \overline{s}}^{sh}), p_{small}^{-1}\mathcal{F})$

where $p : X \times _ S \mathop{\mathrm{Spec}}(\mathcal{O}_{S, \overline{s}}^{sh}) \to X$ is the projection. Since the residue field of the strictly henselian local ring $\mathcal{O}_{S, \overline{s}}^{sh}$ is $\kappa (s)^{sep}$ we conclude from the discussion above the lemma and Lemma 59.91.3. $\square$

There are also:

• 4 comment(s) on Section 59.91: The proper base change theorem

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).