Lemma 21.35.5. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $K, L, M$ be objects of $D(\mathcal{O})$. There is a canonical morphism

$R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M) \otimes _\mathcal {O}^\mathbf {L} K \longrightarrow R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L), M)$

in $D(\mathcal{O})$ functorial in $K, L, M$.

Proof. Choose a K-injective complex $\mathcal{I}^\bullet$ representing $M$, a K-injective complex $\mathcal{J}^\bullet$ representing $L$, and a K-flat complex $\mathcal{K}^\bullet$ representing $K$. The map is defined using the map

$\text{Tot}(\mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{J}^\bullet , \mathcal{I}^\bullet ) \otimes _\mathcal {O} \mathcal{K}^\bullet ) \longrightarrow \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{K}^\bullet , \mathcal{J}^\bullet ), \mathcal{I}^\bullet )$

of Lemma 21.34.5. By our particular choice of complexes the left hand side represents $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M) \otimes _\mathcal {O}^\mathbf {L} K$ and the right hand side represents $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L), M)$. We omit the proof that this is functorial in all three objects of $D(\mathcal{O})$. $\square$

There are also:

• 5 comment(s) on Section 21.35: Internal hom in the derived category

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).