Example 68.18.2. Let K be a characteristic 0 field endowed with an automorphism \sigma of infinite order. Set Y = \mathop{\mathrm{Spec}}(K)/\mathbf{Z} and X = \mathbf{A}^1_ K/\mathbf{Z} where \mathbf{Z} acts on K via \sigma and on \mathbf{A}^1_ K = \mathop{\mathrm{Spec}}(K[t]) via t \mapsto t + 1. Let Z = \mathop{\mathrm{Spec}}(K). Then W = \mathbf{A}^1_ K. Picture
Take x corresponding to t = 0 and z the unique point of \mathop{\mathrm{Spec}}(K). Then we see that F_{x, z} = \mathbf{Z} as a set.
Comments (0)