The Stacks project

Fibers of field points of algebraic spaces have the expected Zariski topologies.

Lemma 66.18.6. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces over $S$. Let $y \in |Y|$ and assume that $y$ is represented by a quasi-compact monomorphism $\mathop{\mathrm{Spec}}(k) \to Y$. Then $|X_ k| \to |X|$ is a homeomorphism onto $f^{-1}(\{ y\} ) \subset |X|$ with induced topology.

Proof. We will use Properties of Spaces, Lemma 64.16.7 and Morphisms of Spaces, Lemma 65.10.9 without further mention. Let $V \to Y$ be an ├ętale morphism with $V$ affine such that there exists a $v \in V$ mapping to $y$. Since $\mathop{\mathrm{Spec}}(k) \to Y$ is quasi-compact there are a finite number of points of $V$ mapping to $y$ (Lemma 66.4.5). After shrinking $V$ we may assume $v$ is the only one. Choose a scheme $U$ and a surjective ├ętale morphism $U \to X$. Consider the commutative diagram

\[ \xymatrix{ U \ar[d] & U_ V \ar[l] \ar[d] & U_ v \ar[l] \ar[d] \\ X \ar[d] & X_ V \ar[l] \ar[d] & X_ v \ar[l] \ar[d] \\ Y & V \ar[l] & v \ar[l] } \]

Since $U_ v \to U_ V$ identifies $U_ v$ with a subset of $U_ V$ with the induced topology (Schemes, Lemma 26.18.5), and since $|U_ V| \to |X_ V|$ and $|U_ v| \to |X_ v|$ are surjective and open, we see that $|X_ v| \to |X_ V|$ is a homeomorphism onto its image (with induced topology). On the other hand, the inverse image of $f^{-1}(\{ y\} )$ under the open map $|X_ V| \to |X|$ is equal to $|X_ v|$. We conclude that $|X_ v| \to f^{-1}(\{ y\} )$ is open. The morphism $X_ v \to X$ factors through $X_ k$ and $|X_ k| \to |X|$ is injective with image $f^{-1}(\{ y\} )$ by Properties of Spaces, Lemma 64.4.3. Using $|X_ v| \to |X_ k| \to f^{-1}(\{ y\} )$ the lemma follows because $X_ v \to X_ k$ is surjective. $\square$


Comments (4)

Comment #1110 by Evan Warner on

Suggested slogan: Fibers of field points of algebraic spaces have the expected Zariski topologies.

Comment #1111 by Evan Warner on

minor typo: presumably we want a morphism over S.

Comment #1112 by Evan Warner on

minor typo: presumably we want a morphism over S.


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0AC8. Beware of the difference between the letter 'O' and the digit '0'.