Definition 73.22.1. Let $S$ be a scheme. Let $f : Y \to X$ be a morphism of algebraic spaces over $S$.

Let $V \to Y$ be a morphism of algebraic spaces. A

*descent datum for $V/Y/X$*is an isomorphism $\varphi : V \times _ X Y \to Y \times _ X V$ of algebraic spaces over $Y \times _ X Y$ satisfying the*cocycle condition*that the diagram\[ \xymatrix{ V \times _ X Y \times _ X Y \ar[rd]^{\varphi _{01}} \ar[rr]_{\varphi _{02}} & & Y \times _ X Y \times _ X V\\ & Y \times _ X V \times _ X Y \ar[ru]^{\varphi _{12}} } \]commutes (with obvious notation).

We also say that the pair $(V/Y, \varphi )$ is a

*descent datum relative to $Y \to X$*.A

*morphism $f : (V/Y, \varphi ) \to (V'/Y, \varphi ')$ of descent data relative to $Y \to X$*is a morphism $f : V \to V'$ of algebraic spaces over $Y$ such that the diagram\[ \xymatrix{ V \times _ X Y \ar[r]_{\varphi } \ar[d]_{f \times \text{id}_ Y} & Y \times _ X V \ar[d]^{\text{id}_ Y \times f} \\ V' \times _ X Y \ar[r]^{\varphi '} & Y \times _ X V' } \]commutes.

## Comments (2)

Comment #6219 by Konrad Zou on

Comment #6356 by Johan on