Definition 74.22.3. Let $S$ be a scheme. Let $\{ X_ i \to X\} _{i \in I}$ be a family of morphisms of algebraic spaces over $S$ with fixed target $X$.

A

*descent datum $(V_ i, \varphi _{ij})$ relative to the family $\{ X_ i \to X\} $*is given by an algebraic space $V_ i$ over $X_ i$ for each $i \in I$, an isomorphism $\varphi _{ij} : V_ i \times _ X X_ j \to X_ i \times _ X V_ j$ of algebraic spaces over $X_ i \times _ X X_ j$ for each pair $(i, j) \in I^2$ such that for every triple of indices $(i, j, k) \in I^3$ the diagram\[ \xymatrix{ V_ i \times _ X X_ j \times _ X X_ k \ar[rd]^{\text{pr}_{01}^*\varphi _{ij}} \ar[rr]_{\text{pr}_{02}^*\varphi _{ik}} & & X_ i \times _ X X_ j \times _ X V_ k\\ & X_ i \times _ X V_ j \times _ X X_ k \ar[ru]^{\text{pr}_{12}^*\varphi _{jk}} } \]of algebraic spaces over $X_ i \times _ X X_ j \times _ X X_ k$ commutes (with obvious notation).

A

*morphism $\psi : (V_ i, \varphi _{ij}) \to (V'_ i, \varphi '_{ij})$ of descent data*is given by a family $\psi = (\psi _ i)_{i \in I}$ of morphisms $\psi _ i : V_ i \to V'_ i$ of algebraic spaces over $X_ i$ such that all the diagrams\[ \xymatrix{ V_ i \times _ X X_ j \ar[r]_{\varphi _{ij}} \ar[d]_{\psi _ i \times \text{id}} & X_ i \times _ X V_ j \ar[d]^{\text{id} \times \psi _ j} \\ V'_ i \times _ X X_ j \ar[r]^{\varphi '_{ij}} & X_ i \times _ X V'_ j } \]commute.

## Comments (0)