Lemma 76.43.6. Let $(A, \mathfrak m, \kappa )$ be a complete Noetherian local ring. Let $X$ be an algebraic space over $\mathop{\mathrm{Spec}}(A)$. If $X \to \mathop{\mathrm{Spec}}(A)$ is proper and $\dim (X_\kappa ) \leq 1$, then $X$ is a scheme projective over $A$.

**Proof.**
Set $X_ n = X \times _{\mathop{\mathrm{Spec}}(A)} \mathop{\mathrm{Spec}}(A/\mathfrak m^ n)$. By Lemma 76.43.5 there exists a projective morphism $Y \to \mathop{\mathrm{Spec}}(A)$ and compatible isomorphisms $Y \times _{\mathop{\mathrm{Spec}}(A)} \mathop{\mathrm{Spec}}(A/\mathfrak m^ n) \cong X \times _{\mathop{\mathrm{Spec}}(A)} \mathop{\mathrm{Spec}}(A/\mathfrak m^ n)$. By Lemma 76.43.3 we see that $X \cong Y$ and the proof is complete.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)