The Stacks project

[4(c), Samuel-UFD]

Example 88.9.1. Let $k$ be a field. The ring $A = k[x, y, z]/(x^ r + y^ s + z^ t)$ is a UFD for $r, s, t$ pairwise coprime integers. Namely, since $x^ r + y^ s + z^ t$ is irreducible $A$ is a domain. The element $z$ is a prime element, i.e., generates a prime ideal in $A$. On the other hand, if $t = 1 + ers$ for some $e$, then

\[ A[1/z] \cong k[x', y', 1/z] \]

where $x' = x/z^{es}$, $y' = y/z^{er}$ and $z = (x')^ r + (y')^ s$. Thus $A[1/z]$ is a localization of a polynomial ring and hence a UFD. It follows from an argument of Nagata that $A$ is a UFD. See Algebra, Lemma 10.120.7. A similar argument can be given if $t$ is not congruent to $1$ modulo $rs$.

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0AE9. Beware of the difference between the letter 'O' and the digit '0'.