Example 89.9.2. The ring $A = \mathbf{C}[[x, y, z]]/(x^ r + y^ s + z^ t)$ is not a UFD when $1 < r < s < t$ are pairwise coprime integers and not equal to $2, 3, 5$. For example consider the special case $A = \mathbf{C}[[x, y, z]]/(x^2 + y^5 + z^7)$. Consider the maps
given by
where $\zeta $ is a $7$th root of unity. The kernel $\mathfrak p_\zeta $ of $\psi _\zeta $ is a height one prime, hence if $A$ is a UFD, then it is principal, say given by $f_\zeta \in \mathbf{C}[[x, y, z]]$. Note that $V(x^3 - y^7) = \bigcup V(\mathfrak p_\zeta )$ and $A/(x^3 - y^7)$ is reduced away from the closed point. Hence, still assuming $A$ is a UFD, we would obtain
for some unit $u \in \mathbf{C}[[x, y, z]]$ and some element $a \in \mathbf{C}[[x, y, z]]$. After scaling by a constant we may assume $u(0, 0, 0) = 1$. Note that the left hand side vanishes to order $7$. Hence $a = - x \bmod \mathfrak m^2$. But then we get a term $xy^5$ on the right hand side which does not occur on the left hand side. A contradiction.
Comments (0)