The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

16.14 Approximation for henselian pairs

We can generalize the discussion of Section 16.13 to the case of henselian pairs. Henselian pairs where defined in More on Algebra, Section 15.11.

slogan

Lemma 16.14.1. Let $(A, I)$ be a henselian pair with $A$ Noetherian. Let $A^\wedge $ be the $I$-adic completion of $A$. Assume at least one of the following conditions holds

  1. $A \to A^\wedge $ is a regular ring map,

  2. $A$ is a Noetherian G-ring, or

  3. $(A, I)$ is the henselization (More on Algebra, Lemma 15.12.1) of a pair $(B, J)$ where $B$ is a Noetherian G-ring.

Given $f_1, \ldots , f_ m \in A[x_1, \ldots , x_ n]$ and $\hat{a}_1, \ldots , \hat{a}_ n \in A^\wedge $ such that $f_ j(\hat{a}_1, \ldots , \hat{a}_ n) = 0$ for $j = 1, \ldots , m$, for every $N \geq 1$ there exist $a_1, \ldots , a_ n \in A$ such that $\hat{a}_ i - a_ i \in I^ N$ and such that $f_ j(a_1, \ldots , a_ n) = 0$ for $j = 1, \ldots , m$.

Proof. By More on Algebra, Lemma 15.49.15 we see that (3) implies (2). By More on Algebra, Lemma 15.49.14 we see that (2) implies (1). Thus it suffices to prove the lemma in case $A \to A^\wedge $ is a regular ring map.

Let $\hat{a}_1, \ldots , \hat{a}_ n$ be as in the statement of the lemma. By Theorem 16.12.1 we can find a factorization $A \to B \to A^\wedge $ with $A \to P$ smooth and $b_1, \ldots , b_ n \in B$ with $f_ j(b_1, \ldots , b_ n) = 0$ in $B$. Denote $\sigma : B \to A^\wedge \to A/I^ N$ the composition. By More on Algebra, Lemma 15.9.14 we can find an ├ętale ring map $A \to A'$ which induces an isomorphism $A/I^ N \to A'/I^ NA'$ and an $A$-algebra map $\tilde\sigma : B \to A'$ lifting $\sigma $. Since $(A, I)$ is henselian, there is an $A$-algebra map $\chi : A' \to A$, see More on Algebra, Lemma 15.11.6. Then setting $a_ i = \chi (\tilde\sigma (b_ i))$ gives a solution. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0AH4. Beware of the difference between the letter 'O' and the digit '0'.