Lemma 15.12.1. The inclusion functor

has a left adjoint $(A, I) \mapsto (A^ h, I^ h)$.

Lemma 15.12.1. The inclusion functor

\[ \text{category of henselian pairs} \longrightarrow \text{category of pairs} \]

has a left adjoint $(A, I) \mapsto (A^ h, I^ h)$.

**Proof.**
Let $(A, I)$ be a pair. Consider the category $\mathcal{C}$ consisting of étale ring maps $A \to B$ such that $A/I \to B/IB$ is an isomorphism. We will show that the category $\mathcal{C}$ is directed and that $A^ h = \mathop{\mathrm{colim}}\nolimits _{B \in \mathcal{C}} B$ with ideal $I^ h = IA^ h$ gives the desired adjoint.

We first prove that $\mathcal{C}$ is directed (Categories, Definition 4.19.1). It is nonempty because $\text{id} : A \to A$ is an object. If $B$ and $B'$ are two objects of $\mathcal{C}$, then $B'' = B \otimes _ A B'$ is an object of $\mathcal{C}$ (use Algebra, Lemma 10.142.3) and there are morphisms $B \to B''$ and $B' \to B''$. Suppose that $f, g : B \to B'$ are two maps between objects of $\mathcal{C}$. Then a coequalizer is

\[ (B' \otimes _{f, B, g} B') \otimes _{(B' \otimes _ A B')} B' \]

which is étale over $A$ by Algebra, Lemmas 10.142.3 and 10.142.8. Thus the category $\mathcal{C}$ is directed.

Since $B/IB = A/I$ for all objects $B$ of $\mathcal{C}$ we see that $A^ h/I^ h = A^ h/IA^ h = \mathop{\mathrm{colim}}\nolimits B/IB = \mathop{\mathrm{colim}}\nolimits A/I = A/I$.

Next, we show that $A^ h = \mathop{\mathrm{colim}}\nolimits _{B \in \mathcal{C}} B$ with $I^ h = IA^ h$ is a henselian pair. To do this we will verify condition (2) of Lemma 15.11.6. Namely, suppose given an étale ring map $A^ h \to A'$ and $A^ h$-algebra map $\sigma : A' \to A^ h/I^ h$. Then there exists a $B \in \mathcal{C}$ and an étale ring map $B \to B'$ such that $A' = B' \otimes _ B A^ h$. See Algebra, Lemma 10.142.3. Since $A^ h/I^ h = A/IB$, the map $\sigma $ induces an $A$-algebra map $s : B' \to A/I$. Then $B'/IB' = A/I \times C$ as $A/I$-algebra, where $C$ is the kernel of the map $B'/IB' \to A/I$ induced by $s$. Let $g \in B'$ map to $(1, 0) \in A/I \times C$. Then $B \to B'_ g$ is étale and $A/I \to B'_ g/IB'_ g$ is an isomorphism, i.e., $B'_ g$ is an object of $\mathcal{C}$. Thus we obtain a canonical map $B'_ g \to A^ h$ such that

\[ \vcenter { \xymatrix{ B'_ g \ar[r] & A^ h \\ B \ar[u] \ar[ur] } } \quad \text{and}\quad \vcenter { \xymatrix{ B' \ar[r] \ar[rrd]_ s & B'_ g \ar[r] & A^ h \ar[d] \\ & & A/I } } \]

commute. This induces a map $A' = B' \otimes _ B A^ h \to A^ h$ compatible with $\sigma $ as desired.

Let $(A, I) \to (A', I')$ be a morphism of pairs with $(A', I')$ henselian. We will show there is a unique factorization $A \to A^ h \to A'$ which will finish the proof. Namely, for each $A \to B$ in $\mathcal{C}$ the ring map $A' \to B' = A' \otimes _ A B$ is étale and induces an isomorphism $A'/I' \to B'/I'B'$. Hence there is a section $\sigma _ B : B' \to A'$ by Lemma 15.11.6. Given a morphism $B_1 \to B_2$ in $\mathcal{C}$ we claim the diagram

\[ \xymatrix{ B'_1 \ar[rr] \ar[rd]_{\sigma _{B_1}} & & B'_2 \ar[ld]^{\sigma _{B_2}} \\ & A' } \]

commutes. This follows once we prove that for every $B$ in $\mathcal{C}$ the section $\sigma _ B$ is the unique $A'$-algebra map $B' \to A'$. We have $B' \otimes _{A'} B' = B' \times R$ for some ring $R$, see Algebra, Lemma 10.150.4. In our case $R/I'R = 0$ as $B'/I'B' = A'/I'$. Thus given two $A'$-algebra maps $\sigma _ B, \sigma _ B' : B' \to A'$ then $e = (\sigma _ B \otimes \sigma _ B')(0, 1) \in A'$ is an idempotent contained in $I'$. We conclude that $e = 0$ by Lemma 15.10.2. Hence $\sigma _ B = \sigma _ B'$ as desired. Using the commutativity we obtain

\[ A^ h = \mathop{\mathrm{colim}}\nolimits _{B \in \mathcal{C}} B \to \mathop{\mathrm{colim}}\nolimits _{B \in \mathcal{C}} A' \otimes _ A B \xrightarrow {\mathop{\mathrm{colim}}\nolimits \sigma _ B} A' \]

as desired. The uniqueness of the maps $\sigma _ B$ also guarantees that this map is unique. Hence $(A, I) \mapsto (A^ h, I^ h)$ is the desired adjoint. $\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (3)

Comment #2174 by JuanPablo on

Comment #2203 by Johan on

Comment #5034 by slogan_bot on