Lemma 87.10.1. Let $S$ be a scheme. Let $X$ be an affine formal algebraic space over $S$. The following are equivalent
there exists a system $X_1 \to X_2 \to X_3 \to \ldots $ of thickenings of affine schemes over $S$ such that $X = \mathop{\mathrm{colim}}\nolimits X_ n$,
there exists a choice $X = \mathop{\mathrm{colim}}\nolimits X_\lambda $ as in Definition 87.9.1 such that $\Lambda $ is countable.
Comments (0)