Lemma 88.5.4. Let $I = (a)$ be a principal ideal of a Noetherian ring $A$. Let $B$ be an object of (88.2.0.2). Assume given an integer $c \geq 0$ such that $\mathop{\mathrm{Ext}}\nolimits ^1_ B(\mathop{N\! L}\nolimits _{B/A}^\wedge , N)$ is annihilated by $a^ c$ for all $B$-modules $N$. Let $C$ be an $I$-adically complete $A$-algebra such that $a$ is a nonzerodivisor on $C$. Let $n > 2c$. For any $A$-algebra map $\psi _ n : B \to C/a^ nC$ there exists an $A$-algebra map $\varphi : B \to C$ such that $\psi _ n \bmod a^{n - c}C = \varphi \bmod a^{n - c}C$.
Proof. Consider the obstruction class
of Remark 88.5.2. Since $a$ is a nonzerodivisor on $C$ the map $a^ c : a^ nC/a^{2n}C \to a^ nC/a^{2n}C$ is isomorphic to the map $a^ nC/a^{2n}C \to a^{n - c}C/a^{2n - c}C$ in the category of $C$-modules. Hence by our assumption on $\mathop{N\! L}\nolimits _{B/A}^\wedge $ we conclude that the class $o(\psi _ n)$ maps to zero in
and a fortiori in
By the discussion in Remark 88.5.2 we obtain a map
which agrees with $\psi _ n$ modulo $a^{n - c}C$. Observe that $2n - 2c > n$ because $n > 2c$.
We may repeat this procedure. Starting with $n_0 = n$ and $\psi ^0 = \psi _ n$ we end up getting a strictly increasing sequence of integers
and $A$-algebra homorphisms $\psi ^ i : B \to C/a^{n_ i}C$ such that $\psi ^{i + 1}$ and $\psi ^ i$ agree modulo $a^{n_ i - c}C$. Since $C$ is $I$-adically complete we can take $\varphi $ to be the limit of the maps $\psi ^ i \bmod a^{n_ i - c}C : B \to C/a^{n_ i - c}C$ and the lemma follows. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)