The Stacks project

Lemma 88.5.5. Let $I = (a)$ be a principal ideal of a Noetherian ring $A$. Let $B$ be an object of (88.2.0.2). Assume given an integer $c \geq 0$ such that $\mathop{\mathrm{Ext}}\nolimits ^1_ B(\mathop{N\! L}\nolimits _{B/A}^\wedge , N)$ is annihilated by $a^ c$ for all $B$-modules $N$. Let $C$ be an $I$-adically complete $A$-algebra. Assume given an integer $d \geq 0$ such that $C[a^\infty ] \cap a^ dC = 0$. Let $n > \max (2c, c + d)$. For any $A$-algebra map $\psi _ n : B \to C/a^ nC$ there exists an $A$-algebra map $\varphi : B \to C$ such that $\psi _ n \bmod a^{n - c} = \varphi \bmod a^{n - c}$.

Proof. Let $C \to C'$ be the quotient of $C$ by $C[a^\infty ]$. The $A$-algebra $C'$ is $I$-adically complete by Algebra, Lemma 10.96.10 and the fact that $\bigcap (C[a^\infty ] + a^ nC) = C[a^\infty ]$ because for $n \geq d$ the sum $C[a^\infty ] + a^ nC$ is direct. For $m \geq d$ the diagram

\[ \xymatrix{ 0 \ar[r] & C[a^\infty ] \ar[r] \ar[d] & C \ar[r] \ar[d] & C' \ar[r] \ar[d] & 0 \\ 0 \ar[r] & C[a^\infty ] \ar[r] & C/a^ m C \ar[r] & C'/a^ m C' \ar[r] & 0 } \]

has exact rows. Thus $C$ is the fibre product of $C'$ and $C/a^ mC$ over $C'/a^ mC'$ for all $m \geq d$. By Lemma 88.5.4 we can choose a homomorphism $\varphi ' : B \to C'$ such that $\varphi '$ and $\psi _ n$ agree as maps into $C'/a^{n - c}C'$. We obtain a homomorphism $(\varphi ', \psi _ n \bmod a^{n - c}C) : B \to C' \times _{C'/a^{n - c}C'} C/a^{n - c}C$. Since $n - c \geq d$ this is the same thing as a homomorphism $\varphi : B \to C$. This finishes the proof. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0AK7. Beware of the difference between the letter 'O' and the digit '0'.