The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

Lemma 10.18.1. Let $R$ be a ring with Jacobson radical $\text{rad}(R)$. Let $I \subset R$ be an ideal. The following are equivalent

  1. $I \subset \text{rad}(R)$, and

  2. every element of $1 + I$ is a unit in $R$.

In this case every element of $R$ which maps to a unit of $R/I$ is a unit.

Proof. If $f \in \text{rad}(R)$, then $f \in \mathfrak m$ for all maximal ideals $\mathfrak m$ of $R$. Hence $1 + f \not\in \mathfrak m$ for all maximal ideals $\mathfrak m$ of $R$. Thus the closed subset $V(1 + f)$ of $\mathop{\mathrm{Spec}}(R)$ is empty. This implies that $1 + f$ is a unit, see Lemma 10.16.2.

Conversely, assume that $1 + f$ is a unit for all $f \in I$. If $\mathfrak m$ is a maximal ideal and $I \not\subset \mathfrak m$, then $I + \mathfrak m = R$. Hence $1 = f + g$ for some $g \in \mathfrak m$ and $f \in I$. Then $g = 1 + (-f)$ is not a unit, contradiction.

For the final statement let $f \in R$ map to a unit in $R/I$. Then we can find $g \in R$ mapping to the multiplicative inverse of $f \bmod I$. Then $fg = 1 \bmod I$. Hence $fg$ is a unit of $R$ by (2) which implies that $f$ is a unit. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 10.18: The Jacobson radical of a ring

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0AME. Beware of the difference between the letter 'O' and the digit '0'.