Theorem 76.24.1. Let $S$ be a scheme. Let $f : X \to Y$ and $Y \to Z$ be morphisms of algebraic spaces over $S$. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module. Assume
$X$, $Y$, $Z$ locally Noetherian, and
$\mathcal{F}$ a coherent $\mathcal{O}_ X$-module.
Let $x \in |X|$ and let $y \in |Y|$ and $z \in |Z|$ be the images of $x$. If $\mathcal{F}_{\overline{x}} \not= 0$, then the following are equivalent:
$\mathcal{F}$ is flat over $Z$ at $x$ and the restriction of $\mathcal{F}$ to its fibre over $z$ is flat at $x$ over the fibre of $Y$ over $z$, and
$Y$ is flat over $Z$ at $y$ and $\mathcal{F}$ is flat over $Y$ at $x$.
Comments (0)