Lemma 88.25.6. Let $S$ be a scheme. Let $X$ be a locally Noetherian algebraic space over $S$. Let $T \subset |X|$ be a closed subset. Let $s, t : R \to U$ be two morphisms of algebraic spaces over $X$. Assume

$R$, $U$ are locally of finite type over $X$,

the base change of $s$ and $t$ to $X \setminus T$ is an étale equivalence relation, and

the formal completion $(t_{/T}, s_{/T}) : R_{/T} \to U_{/T} \times _{X_{/T}} U_{/T}$ is an equivalence relation too (see proof for notation).

Then $(t, s) : R \to U \times _ X U$ is an étale equivalence relation.

**Proof.**
The notation using the subscript ${}_{/T}$ in the statement refers to the construction which to a morphism $f : X' \to X$ of algebraic spaces associates the morphism $f_{/T} : X'_{/f^{-1}T} \to X_{/T}$ of formal algebraic spaces, see Section 88.23. The morphisms $s, t : R \to U$ are étale over $X \setminus T$ by assumption. Since the formal completions of the maps $s, t : R \to U$ are étale, we see that $s$ and $t$ are étale for example by More on Morphisms, Lemma 37.12.3. Applying Lemma 88.25.3 to the morphisms $\text{id} : R \times _{U \times _ X U} R \to R \times _{U \times _ X U} R$ and $\Delta : R \to R \times _{U \times _ X U} R$ we conclude that $(t, s)$ is a monomorphism. Applying it again to $(t \circ \text{pr}_0, s \circ \text{pr}_1) : R \times _{s, U, t} R \to U \times _ X U$ and $(t, s) : R \to U \times _ X U$ we find that “transitivity” holds. We omit the proof of the other two axioms of an equivalence relation.
$\square$

## Comments (0)