The Stacks project

Lemma 88.25.7. Let $S$ be a scheme. Let $X$ be a locally Noetherian algebraic space over $S$ and let $T \subset |X|$ be a closed subset. Let $f : X' \to X$ be a morphism of algebraic spaces which is locally of finite type and étale outside of $T$. There exists a factorization

\[ X' \longrightarrow X'' \longrightarrow X \]

of $f$ with the following properties: $X'' \to X$ is locally of finite type, $X'' \to X$ is an isomorphism over $X \setminus T$, and $X'_{/T} \to X''_{/T}$ is an isomorphism (see proof for notation).

Proof. The notation using the subscript ${}_{/T}$ in the statement refers to the construction which to a morphism $f : X' \to X$ of algebraic spaces associates the morphism $f_{/T} : X'_{/f^{-1}T} \to X_{/T}$ of formal algebraic spaces, see Section 88.23. We will also use the notion $U \subset X$ and $U' \subset X'$ to denote the open subspaces with $|U| = |X| \setminus T$ and $U' = |X'| \setminus f^{-1}T$ introduced in Section 88.23.

After replacing $X'$ by $X' \amalg U$ we may and do assume the image of $X' \to X$ contains $U$. Let

\[ R = X' \amalg _{U'} (U' \times _ U U') \]

be the pushout of $U' \to X'$ and the diagonal morphism $U' \to U' \times _ U U' = U' \times _ X U'$. Since $U' \to X$ is étale, this diagonal is an open immersion and we see that $R$ is an algebraic space (this follows for example from Spaces, Lemma 65.8.5). The two projections $U' \times _ U U' \to U'$ extend to $R$ and we obtain two étale morphisms $s, t : R \to X'$. Checking on each piece separatedly we find that $R$ is an étale equivalence relation on $X'$. Set $X'' = X'/R$ which is an algebraic space by Bootstrap, Theorem 80.10.1. By construction have the factorization as in the lemma and the morphism $X'' \to X$ is locally of finite type (as this can be checked étale locally, i.e., on $X'$). Since $U' \to U$ is a surjective étale morphism and since $s^{-1}(U') = t^{-1}(U') = U' \times _ U U'$ we see that $U'' = U \times _ X X'' \to U$ is an isomorphism. Finally, we have to show the morphism $X' \to X''$ induces an isomorphism $X'_{/T} \to X''_{/T}$. To see this, note that the formal completion of $R$ along the inverse image of $T$ is equal to the formal completion of $X'$ along the inverse image of $T$ by our choice of $R$! By our construction of the formal completion in Formal Spaces, Section 87.14 we have $X''_{/T} = (X'_{/T}) / (R_{/T})$ as sheaves. Since $X'_{/T} = R_{/T}$ we conclude that $X'_{/T} = X''_{/T}$ and this finishes the proof. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0AR9. Beware of the difference between the letter 'O' and the digit '0'.