Loading [MathJax]/extensions/tex2jax.js

The Stacks project

Lemma 87.30.3. Let $S$ be a scheme. Let $f : X \to Z$, $g : Y \to Z$ and $Z \to T$ be morphisms of formal algebraic spaces over $S$. Consider the induced morphism $i : X \times _ Z Y \to X \times _ T Y$. Then

  1. $i$ is representable (by schemes), locally of finite type, locally quasi-finite, separated, and a monomorphism,

  2. if $Z \to T$ is separated, then $i$ is a closed immersion, and

  3. if $Z \to T$ is quasi-separated, then $i$ is quasi-compact.

Proof. By general category theory the following diagram

\[ \xymatrix{ X \times _ Z Y \ar[r]_ i \ar[d] & X \times _ T Y \ar[d] \\ Z \ar[r]^-{\Delta _{Z/T}} \ar[r] & Z \times _ T Z } \]

is a fibre product diagram. Hence $i$ is the base change of the diagonal morphism $\Delta _{Z/T}$. Thus the lemma follows from Lemma 87.15.5. $\square$


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.