Loading [MathJax]/extensions/tex2jax.js

The Stacks project

Lemma 15.23.11. Let $R$ be a Noetherian ring. Let $M$, $N$ be finite $R$-modules.

  1. If $N$ has property $(S_1)$, then $\mathop{\mathrm{Hom}}\nolimits _ R(M, N)$ has property $(S_1)$.

  2. If $N$ has property $(S_2)$, then $\mathop{\mathrm{Hom}}\nolimits _ R(M, N)$ has property $(S_2)$.

  3. If $R$ is a domain, $N$ is torsion free and $(S_2)$, then $\mathop{\mathrm{Hom}}\nolimits _ R(M, N)$ is torsion free and has property $(S_2)$.

Proof. Since localizing at primes commutes with taking $\mathop{\mathrm{Hom}}\nolimits _ R$ for finite $R$-modules (Algebra, Lemma 10.71.9) parts (1) and (2) follow immediately from Lemma 15.23.10. Part (3) follows from (2) and Lemma 15.22.12. $\square$


Comments (0)

There are also:

  • 1 comment(s) on Section 15.23: Reflexive modules

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.