Lemma 31.11.6. Let $f : X \to Y$ be a flat morphism of integral schemes. Let $\mathcal{G}$ be a torsion free quasi-coherent $\mathcal{O}_ Y$-module. Then $f^*\mathcal{G}$ is a torsion free $\mathcal{O}_ X$-module.
Proof. Omitted. See More on Algebra, Lemma 15.22.4 for the algebraic analogue. $\square$
Comments (2)
Comment #8390 by timothy de deyn on
Comment #9000 by Stacks project on