31.11 Torsion free modules
This section is the analogue of More on Algebra, Section 15.22 for quasi-coherent modules.
Lemma 31.11.1. Let X be an integral scheme with generic point \eta . Let \mathcal{F} be a quasi-coherent \mathcal{O}_ X-module. Let U \subset X be nonempty open and s \in \mathcal{F}(U). The following are equivalent
for some x \in U the image of s in \mathcal{F}_ x is torsion,
for all x \in U the image of s in \mathcal{F}_ x is torsion,
the image of s in \mathcal{F}_\eta is zero,
the image of s in j_*\mathcal{F}_\eta is zero, where j : \eta \to X is the inclusion morphism.
Proof.
Omitted.
\square
Definition 31.11.2. Let X be an integral scheme. Let \mathcal{F} be a quasi-coherent \mathcal{O}_ X-module.
We say a local section of \mathcal{F} is torsion if it satisfies the equivalent conditions of Lemma 31.11.1.
We say \mathcal{F} is torsion free if every torsion section of \mathcal{F} is 0.
Here is the obligatory lemma comparing this to the usual algebraic notion.
Lemma 31.11.3. Let X be an integral scheme. Let \mathcal{F} be a quasi-coherent \mathcal{O}_ X-module. The following are equivalent
\mathcal{F} is torsion free,
for U \subset X affine open \mathcal{F}(U) is a torsion free \mathcal{O}(U)-module.
Proof.
Omitted.
\square
Lemma 31.11.4. Let X be an integral scheme. Let \mathcal{F} be a quasi-coherent \mathcal{O}_ X-module. The torsion sections of \mathcal{F} form a quasi-coherent \mathcal{O}_ X-submodule \mathcal{F}_{tors} \subset \mathcal{F}. The quotient module \mathcal{F}/\mathcal{F}_{tors} is torsion free.
Proof.
Omitted. See More on Algebra, Lemma 15.22.2 for the algebraic analogue.
\square
Lemma 31.11.5. Let X be an integral scheme. Any flat quasi-coherent \mathcal{O}_ X-module is torsion free.
Proof.
Omitted. See More on Algebra, Lemma 15.22.9.
\square
Lemma 31.11.6. Let f : X \to Y be a flat morphism of integral schemes. Let \mathcal{G} be a torsion free quasi-coherent \mathcal{O}_ Y-module. Then f^*\mathcal{G} is a torsion free \mathcal{O}_ X-module.
Proof.
Omitted. See More on Algebra, Lemma 15.22.4 for the algebraic analogue.
\square
Lemma 31.11.7. Let f : X \to Y be a flat morphism of schemes. If Y is integral and the generic fibre of f is integral, then X is integral.
Proof.
The algebraic analogue is this: let A be a domain with fraction field K and let B be a flat A-algebra such that B \otimes _ A K is a domain. Then B is a domain. This is true because B is torsion free by More on Algebra, Lemma 15.22.9 and hence B \subset B \otimes _ A K.
\square
Lemma 31.11.8. Let X be an integral scheme. Let \mathcal{F} be a quasi-coherent \mathcal{O}_ X-module. Then \mathcal{F} is torsion free if and only if \mathcal{F}_ x is a torsion free \mathcal{O}_{X, x}-module for all x \in X.
Proof.
Omitted. See More on Algebra, Lemma 15.22.6.
\square
Lemma 31.11.9. Let X be an integral scheme. Let 0 \to \mathcal{F} \to \mathcal{F}' \to \mathcal{F}'' \to 0 be a short exact sequence of quasi-coherent \mathcal{O}_ X-modules. If \mathcal{F} and \mathcal{F}'' are torsion free, then \mathcal{F}' is torsion free.
Proof.
Omitted. See More on Algebra, Lemma 15.22.5 for the algebraic analogue.
\square
Lemma 31.11.10. Let X be a locally Noetherian integral scheme with generic point \eta . Let \mathcal{F} be a nonzero coherent \mathcal{O}_ X-module. The following are equivalent
\mathcal{F} is torsion free,
\eta is the only associated prime of \mathcal{F},
\eta is in the support of \mathcal{F} and \mathcal{F} has property (S_1), and
\eta is in the support of \mathcal{F} and \mathcal{F} has no embedded associated prime.
Proof.
This is a translation of More on Algebra, Lemma 15.22.8 into the language of schemes. We omit the translation.
\square
Lemma 31.11.11. Let X be an integral regular scheme of dimension \leq 1. Let \mathcal{F} be a coherent \mathcal{O}_ X-module. The following are equivalent
\mathcal{F} is torsion free,
\mathcal{F} is finite locally free.
Proof.
It is clear that a finite locally free module is torsion free. For the converse, we will show that if \mathcal{F} is torsion free, then \mathcal{F}_ x is a free \mathcal{O}_{X, x}-module for all x \in X. This is enough by Algebra, Lemma 10.78.2 and the fact that \mathcal{F} is coherent. If \dim (\mathcal{O}_{X, x}) = 0, then \mathcal{O}_{X, x} is a field and the statement is clear. If \dim (\mathcal{O}_{X, x}) = 1, then \mathcal{O}_{X, x} is a discrete valuation ring (Algebra, Lemma 10.119.7) and \mathcal{F}_ x is torsion free. Hence \mathcal{F}_ x is free by More on Algebra, Lemma 15.22.11.
\square
Lemma 31.11.12. Let X be an integral scheme. Let \mathcal{F}, \mathcal{G} be quasi-coherent \mathcal{O}_ X-modules. If \mathcal{G} is torsion free and \mathcal{F} is of finite presentation, then \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{G}) is torsion free.
Proof.
The statement makes sense because \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{G}) is quasi-coherent by Schemes, Section 26.24. To see the statement is true, see More on Algebra, Lemma 15.22.12. Some details omitted.
\square
Lemma 31.11.13. Let X be an integral locally Noetherian scheme. Let \varphi : \mathcal{F} \to \mathcal{G} be a map of quasi-coherent \mathcal{O}_ X-modules. Assume \mathcal{F} is coherent, \mathcal{G} is torsion free, and that for every x \in X one of the following happens
\mathcal{F}_ x \to \mathcal{G}_ x is an isomorphism, or
\text{depth}(\mathcal{F}_ x) \geq 2.
Then \varphi is an isomorphism.
Proof.
This is a translation of More on Algebra, Lemma 15.23.14 into the language of schemes.
\square
Comments (0)