Lemma 31.11.12. Let $X$ be an integral scheme. Let $\mathcal{F}$, $\mathcal{G}$ be quasi-coherent $\mathcal{O}_ X$-modules. If $\mathcal{G}$ is torsion free and $\mathcal{F}$ is of finite presentation, then $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{G})$ is torsion free.
Proof. The statement makes sense because $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{G})$ is quasi-coherent by Schemes, Section 26.24. To see the statement is true, see More on Algebra, Lemma 15.22.12. Some details omitted. $\square$
Comments (0)