Lemma 31.11.13. Let $X$ be an integral locally Noetherian scheme. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a map of quasi-coherent $\mathcal{O}_ X$-modules. Assume $\mathcal{F}$ is coherent, $\mathcal{G}$ is torsion free, and that for every $x \in X$ one of the following happens
$\mathcal{F}_ x \to \mathcal{G}_ x$ is an isomorphism, or
$\text{depth}(\mathcal{F}_ x) \geq 2$.
Then $\varphi $ is an isomorphism.
Comments (0)