Lemma 31.11.9. Let $X$ be an integral scheme. Let $0 \to \mathcal{F} \to \mathcal{F}' \to \mathcal{F}'' \to 0$ be a short exact sequence of quasi-coherent $\mathcal{O}_ X$-modules. If $\mathcal{F}$ and $\mathcal{F}''$ are torsion free, then $\mathcal{F}'$ is torsion free.
Proof. Omitted. See More on Algebra, Lemma 15.22.5 for the algebraic analogue. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)