Lemma 33.44.11. Let k be a field. Let f : X \to Y be a nonconstant morphism of proper curves over k. Let \mathcal{E} be a locally free \mathcal{O}_ Y-module. Then
\deg (f^*\mathcal{E}) = \deg (X/Y) \deg (\mathcal{E})
Proof. The degree of X over Y is defined in Morphisms, Definition 29.51.8. Thus f_*\mathcal{O}_ X is a coherent \mathcal{O}_ Y-module of rank \deg (X/Y), i.e., \deg (X/Y) = \dim _{\kappa (\xi )} (f_*\mathcal{O}_ X)_\xi where \xi is the generic point of Y. Thus we obtain
\begin{align*} \chi (X, f^*\mathcal{E}) & = \chi (Y, f_*f^*\mathcal{E}) \\ & = \chi (Y, \mathcal{E} \otimes f_*\mathcal{O}_ X) \\ & = \deg (X/Y) \deg (\mathcal{E}) + n \chi (Y, f_*\mathcal{O}_ X) \\ & = \deg (X/Y) \deg (\mathcal{E}) + n \chi (X, \mathcal{O}_ X) \end{align*}
as desired. The first equality as f is finite, see Cohomology of Schemes, Lemma 30.2.4. The second equality by projection formula, see Cohomology, Lemma 20.54.2. The third equality by Lemma 33.44.5. \square
Comments (0)
There are also: