Lemma 31.2.8. Let X be a locally Noetherian scheme. Let \mathcal{F} be a quasi-coherent \mathcal{O}_ X-module. If U \subset X is open and \text{Ass}(\mathcal{F}) \subset U, then \Gamma (X, \mathcal{F}) \to \Gamma (U, \mathcal{F}) is injective.
Proof. Let s \in \Gamma (X, \mathcal{F}) be a section which restricts to zero on U. Let \mathcal{F}' \subset \mathcal{F} be the image of the map \mathcal{O}_ X \to \mathcal{F} defined by s. Then \text{Supp}(\mathcal{F}') \cap U = \emptyset . On the other hand, \text{Ass}(\mathcal{F}') \subset \text{Ass}(\mathcal{F}) by Lemma 31.2.4. Since also \text{Ass}(\mathcal{F}') \subset \text{Supp}(\mathcal{F}') (Lemma 31.2.3) we conclude \text{Ass}(\mathcal{F}') = \emptyset . Hence \mathcal{F}' = 0 by Lemma 31.2.6. \square
Comments (2)
Comment #3570 by Laurent Moret-Bailly on
Comment #3694 by Johan on
There are also: