Remark 42.29.6. Let $X \to S$, $\mathcal{L}$, $s$, $i : D \to X$ be as in Definition 42.29.1 and assume that $\mathcal{L}|_ D \cong \mathcal{O}_ D$. In this case we can define a canonical map $i^* : Z_{k + 1}(X) \to Z_ k(D)$ on cycles, by requiring that $i^*[W] = 0$ whenever $W \subset D$ is an integral closed subscheme. The possibility to do this will be useful later on.

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)