Lemma 67.26.1. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces over $S$. If $Y$ is Nagata and $f$ locally of finite type then $X$ is Nagata.
Proof. Let $V$ be a scheme and let $V \to Y$ be a surjective étale morphism. Let $U$ be a scheme and let $U \to X \times _ Y V$ be a surjective étale morphism. If $Y$ is Nagata, then $V$ is a Nagata scheme. If $X \to Y$ is locally of finite type, then $U \to V$ is locally of finite type. Hence $V$ is a Nagata scheme by Morphisms, Lemma 29.18.1. Then $X$ is Nagata by definition. $\square$
Comments (0)