Lemma 67.48.11. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces over $S$. Assume that
$Y$ is Nagata,
$f$ is quasi-separated of finite type,
$X$ is reduced.
Then the normalization $\nu : Y' \to Y$ of $Y$ in $X$ is finite.
Lemma 67.48.11. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces over $S$. Assume that
$Y$ is Nagata,
$f$ is quasi-separated of finite type,
$X$ is reduced.
Then the normalization $\nu : Y' \to Y$ of $Y$ in $X$ is finite.
Proof. The question is étale local on $Y$, see Lemma 67.48.4. Thus we may assume $Y = \mathop{\mathrm{Spec}}(R)$ is affine. Then $R$ is a Noetherian Nagata ring and we have to show that the integral closure of $R$ in $\Gamma (X, \mathcal{O}_ X)$ is finite over $R$. Since $f$ is quasi-compact we see that $X$ is quasi-compact. Choose an affine scheme $U$ and a surjective étale morphism $U \to X$ (Properties of Spaces, Lemma 66.6.3). Then $\Gamma (X, \mathcal{O}_ X) \subset \Gamma (U, \mathcal{O}_ X)$. Since $R$ is Noetherian it suffices to show that the integral closure of $R$ in $\Gamma (U, \mathcal{O}_ U)$ is finite over $R$. As $U \to Y$ is of finite type this follows from Morphisms, Lemma 29.53.15. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #5093 by Tongmu He on
Comment #5302 by Johan on
There are also: