Lemma 67.22.3. Let $S$ be a scheme. Let $f : X \to Y$ be a birational morphism of algebraic spaces over $S$ which are decent and have finitely many irreducible components. If $y \in Y$ is the generic point of an irreducible component, then the base change $X \times _ Y \mathop{\mathrm{Spec}}(\mathcal{O}_{Y, y}) \to \mathop{\mathrm{Spec}}(\mathcal{O}_{Y, y})$ is an isomorphism.

Proof. Let $X' \subset X$ and $Y' \subset Y$ be the maximal open subspaces which are representable, see Lemma 67.20.4. By Lemma 67.21.3 the fibre of $f$ over $y$ is consists of points of codimension $0$ of $X$ and is therefore contained in $X'$. Hence $X \times _ Y \mathop{\mathrm{Spec}}(\mathcal{O}_{Y, y}) = X' \times _{Y'} \mathop{\mathrm{Spec}}(\mathcal{O}_{Y', y})$ and the result follows from Morphisms, Lemma 29.50.3. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0BBD. Beware of the difference between the letter 'O' and the digit '0'.