The Stacks project

Lemma 66.22.5. Let $S$ be a scheme. Let $f : X \to Y$ be a birational morphism of algebraic spaces over $S$ which are decent and have finitely many irreducible components. Assume

  1. either $f$ is quasi-compact or $f$ is separated, and

  2. either $f$ is locally of finite type and $Y$ is reduced or $f$ is locally of finite presentation.

Then there exists a dense open $V \subset Y$ such that $f^{-1}(V) \to V$ is an isomorphism.

Proof. By Lemma 66.20.4 we may assume $Y$ is a scheme. By Lemma 66.21.4 we may assume that $f$ is finite. Then $X$ is a scheme too and the result follows from Morphisms, Lemma 29.50.6. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0BBF. Beware of the difference between the letter 'O' and the digit '0'.