The Stacks project

Lemma 68.22.7. Let $S$ be a scheme. Let $f : X \to Y$ be a birational morphism between algebraic spaces over $S$ which are decent and have finitely many irreducible components. Then the normalizations $X^\nu \to X$ and $Y^\nu \to Y$ exist and there is a commutative diagram

\[ \xymatrix{ X^\nu \ar[r] \ar[d] & Y^\nu \ar[d] \\ X \ar[r] & Y } \]

of algebraic spaces over $S$. The morphism $X^\nu \to Y^\nu $ is birational.

Proof. By Lemma 68.20.4 we see that $X$ and $Y$ satisfy the equivalent conditions of Morphisms of Spaces, Lemma 67.49.1 and the normalizations are defined. By Morphisms of Spaces, Lemma 67.49.8 the algebraic space $X^\nu $ is normal and maps codimension $0$ points to codimension $0$ points. Since $f$ maps codimension $0$ points to codimension $0$ points (this is the same as generic points on decent spaces by Lemma 68.20.1) we obtain from Morphisms of Spaces, Lemma 67.49.8 a factorization of the composition $X^\nu \to X \to Y$ through $Y^\nu $.

Observe that $X^\nu $ and $Y^\nu $ are decent for example by Lemma 68.6.5. Moreover the maps $X^\nu \to X$ and $Y^\nu \to Y$ induce bijections on irreducible components (see references above) hence $X^\nu $ and $Y^\nu $ both have a finite number of irreducible components and the map $X^\nu \to Y^\nu $ induces a bijection between their generic points. To prove that $X^\nu \to Y^\nu $ is birational, it therefore suffices to show it induces an isomorphism on local rings at these points. To do this we may replace $X$ and $Y$ by open neighbourhoods of their generic points, hence we may assume $X$ and $Y$ are affine irreducible schemes with generic points $x$ and $y$. Since $f$ is birational the map $\mathcal{O}_{X, x} \to \mathcal{O}_{Y, y}$ is an isomorphism. Let $x^\nu \in X^\nu $ and $y^\nu \in Y^\nu $ be the points lying over $x$ and $y$. By construction of the normalization we see that $\mathcal{O}_{X^\nu , x^\nu } = \mathcal{O}_{X, x}/\mathfrak m_ x$ and similarly on $Y$. Thus the map $\mathcal{O}_{X^\nu , x^\nu } \to \mathcal{O}_{Y^\nu , y^\nu }$ is an isomorphism as well. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0BBG. Beware of the difference between the letter 'O' and the digit '0'.