The Stacks project

Lemma 66.14.3. Notation and assumptions as in Proposition 66.14.1. Then

  1. if $U$ is quasi-separated over $S$, then $U/R$ is quasi-separated over $S$,

  2. if $U$ is quasi-separated, then $U/R$ is quasi-separated,

  3. if $U$ is separated over $S$, then $U/R$ is separated over $S$,

  4. if $U$ is separated, then $U/R$ is separated, and

  5. add more here.

Similar results hold in the setting of Lemma 66.14.2.

Proof. Since $M$ represents the quotient sheaf we have a cartesian diagram

\[ \xymatrix{ R \ar[r]_-j \ar[d] & U \times _ S U \ar[d] \\ M \ar[r] & M \times _ S M } \]

of schemes. Since $U \times _ S U \to M \times _ S M$ is surjective finite locally free, to show that $M \to M \times _ S M$ is quasi-compact, resp. a closed immersion, it suffices to show that $j : R \to U \times _ S U$ is quasi-compact, resp. a closed immersion, see Descent, Lemmas 35.23.1 and 35.23.19. Since $j : R \to U \times _ S U$ is a morphism over $U$ and since $R$ is finite over $U$, we see that $j$ is quasi-compact as soon as the projection $U \times _ S U \to U$ is quasi-separated (Schemes, Lemma 26.21.14). Since $j$ is a monomorphism and locally of finite type, we see that $j$ is a closed immersion as soon as it is proper (Étale Morphisms, Lemma 41.7.2) which will be the case as soon as the projection $U \times _ S U \to U$ is separated (Morphisms, Lemma 29.41.7). This proves (1) and (3). To prove (2) and (4) we replace $S$ by $\mathop{\mathrm{Spec}}(\mathbf{Z})$, see Definition 66.3.1. Since Lemma 66.14.2 is proved through an application of Proposition 66.14.1 the final statement is clear too. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0BBM. Beware of the difference between the letter 'O' and the digit '0'.