Remark 31.16.3. It is not clear how to characterize the non-Noetherian local rings $(A, \mathfrak m)$ whose punctured spectrum is affine. Such a ring has a finitely generated ideal $I$ with $\mathfrak m = \sqrt{I}$. Of course if we can take $I$ generated by $1$ element, then $A$ has an affine puncture spectrum; this gives lots of non-Noetherian examples. Conversely, it follows from the argument in the proof of Lemma 31.16.1 that such a ring cannot possess a nonzerodivisor $f \in \mathfrak m$ with $H^0_ I(A/fA) = 0$ (so $A$ cannot have a regular sequence of length $2$). Moreover, the same holds for any ring $A'$ which is the target of a local homomorphism of local rings $A \to A'$ such that $\mathfrak m_{A'} = \sqrt{\mathfrak mA'}$.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: