Lemma 31.16.4. Let $X$ be a locally Noetherian scheme. Let $U \subset X$ be an open subscheme such that the inclusion morphism $U \to X$ is affine. For every generic point $\xi $ of an irreducible component of $X \setminus U$ the local ring $\mathcal{O}_{X, \xi }$ has dimension $\leq 1$. If $U$ is dense or if $\xi $ is in the closure of $U$, then $\dim (\mathcal{O}_{X, \xi }) = 1$.
[EGA IV, Corollaire 21.12.7, EGA4]
Proof.
Since $\xi $ is a generic point of $X \setminus U$, we see that
is the punctured spectrum of $\mathcal{O}_{X, \xi }$ (hint: use Schemes, Lemma 26.13.2). As $U \to X$ is affine, we see that $U_\xi \to \mathop{\mathrm{Spec}}(\mathcal{O}_{X, \xi })$ is affine (Morphisms, Lemma 29.11.8) and we conclude that $U_\xi $ is affine. Hence $\dim (\mathcal{O}_{X, \xi }) \leq 1$ by Lemma 31.16.1. If $\xi \in \overline{U}$, then there is a specialization $\eta \to \xi $ where $\eta \in U$ (just take $\eta $ a generic point of an irreducible component of $\overline{U}$ which contains $\xi $; since $\overline{U}$ is locally Noetherian, hence locally has finitely many irreducible components, we see that $\eta \in U$). Then $\eta \in \mathop{\mathrm{Spec}}(\mathcal{O}_{X, \xi })$ and we see that the dimension cannot be $0$.
$\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: