Lemma 31.17.4. Let $\pi : X \to Y$ be a finite morphism of schemes. Assume $X$ has an ample invertible sheaf and there exists a norm of degree $d$ for $\pi $. Then $Y$ has an ample invertible sheaf.

**Proof.**
Let $\mathcal{L}$ be the ample invertible sheaf on $X$ given to us by assumption. We will prove that $\mathcal{N} = \text{Norm}_\pi (\mathcal{L})$ is ample on $Y$.

Since $X$ is quasi-compact (Properties, Definition 28.26.1) and $X \to Y$ surjective (by the existence of $\text{Norm}_\pi $) we see that $Y$ is quasi-compact. Let $y \in Y$ be a point. To finish the proof we will show that there exists a section $t$ of some positive tensor power of $\mathcal{N}$ which does not vanish at $y$ such that $Y_ t$ is affine. To do this, choose an affine open neighbourhood $V \subset Y$ of $y$. Choose $n \gg 0$ and a section $s \in \Gamma (X, \mathcal{L}^{\otimes n})$ such that

by Properties, Lemma 28.29.6. Then $t = \text{Norm}_\pi (s)$ is a section of $\mathcal{N}^{\otimes n}$ which does not vanish at $x$ and with $Y_ t \subset V$, see Lemma 31.17.3. Then $Y_ t$ is affine by Properties, Lemma 28.26.4. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: