Lemma 31.17.7. Let $\pi : X \to Y$ be a finite surjective morphism with $X$ and $Y$ integral and $Y$ normal. Then there exists a norm of degree $[R(X) : R(Y)]$ for $\pi $.
Proof. Let $\mathop{\mathrm{Spec}}(B) \subset Y$ be an affine open subset and let $\mathop{\mathrm{Spec}}(A) \subset X$ be its inverse image. Then $A$ and $B$ are domains. Let $K$ be the fraction field of $A$ and $L$ the fraction field of $B$. Picture:
Since $K/L$ is a finite extension, there is a norm map $\text{Norm}_{K/L} : K^* \to L^*$ of degree $d = [K : L]$; this is given by mapping $f \in K$ to $\det _ L(f : K \to K)$ as in the proof of Lemma 31.17.6. Observe that the characteristic polynomial of $f : K \to K$ is a power of the minimal polynomial of $f$ over $L$; in particular $\text{Norm}_{K/L}(f)$ is a power of the constant coefficient of the minimal polynomial of $f$ over $L$. Hence by Algebra, Lemma 10.38.6 $\text{Norm}_{K/L}$ maps $A$ into $B$. This determines a compatible system of maps on sections over affines and hence a global norm map $\text{Norm}_\pi $ of degree $d$.
Property (1) is immediate from the construction. To see property (2) let $f \in A$ be contained in the prime ideal $\mathfrak p \subset A$. Let $f^ m + b_1 f^{m - 1} + \ldots + b_ m$ be the minimal polynomial of $f$ over $L$. By Algebra, Lemma 10.38.6 we have $b_ i \in B$. Hence $b_0 \in B \cap \mathfrak p$. Since $\text{Norm}_{K/L}(f) = b_0^{d/m}$ (see above) we conclude that the norm vanishes in the image point of $\mathfrak p$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: