Processing math: 100%

The Stacks project

Definition 33.45.3. Let k be a field. Let X be a proper scheme over k. Let i : Z \to X be a closed subscheme of dimension d. Let \mathcal{L}_1, \ldots , \mathcal{L}_ d be invertible \mathcal{O}_ X-modules. We define the intersection number (\mathcal{L}_1 \cdots \mathcal{L}_ d \cdot Z) as the coefficient of n_1 \ldots n_ d in the numerical polynomial

\chi (X, i_*\mathcal{O}_ Z \otimes \mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes \mathcal{L}_ d^{\otimes n_ d}) = \chi (Z, \mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes \mathcal{L}_ d^{\otimes n_ d}|_ Z)

In the special case that \mathcal{L}_1 = \ldots = \mathcal{L}_ d = \mathcal{L} we write (\mathcal{L}^ d \cdot Z).


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.