Lemma 33.45.4. In the situation of Definition 33.45.3 the intersection number $(\mathcal{L}_1 \cdots \mathcal{L}_ d \cdot Z)$ is an integer.
Proof. Any numerical polynomial of degree $e$ in $n_1, \ldots , n_ d$ can be written uniquely as a $\mathbf{Z}$-linear combination of the functions ${n_1 \choose k_1}{n_2 \choose k_2} \ldots {n_ d \choose k_ d}$ with $k_1 + \ldots + k_ d \leq e$. Apply this with $e = d$. Left as an exercise. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)